Design of non-cysteine-containing antimicrobial beta-hairpins: structure-activity relationship studies with linear protegrin-1 analogues.
نویسندگان
چکیده
Protegrins are short, cationic peptides that display potent, broad-spectrum antimicrobial activity. PG-1, the first of the five natural analogues discovered, forms a rigid antiparallel two-stranded beta-sheet that is stabilized by two disulfide bonds. The two strands of the sheet are linked by a short two-residue loop segment. Removal of the disulfide bridges (e.g., in Cys --> Ala analogues) is known to cause marked loss of antimicrobial activity. We have used basic principles of beta-hairpin design to develop linear analogues of PG-1 that lack cysteine but nevertheless display PG-1-like activity. Our most potent reengineered molecules contain three essential design features: (i) the four cysteine residues of PG-1 are replaced by residues that have high propensity for beta-strand conformation, (ii) D-proline is placed at the i + 1 position of the reverse turn to promote a type II' beta-turn, and (iii) amino functionality is incorporated at the gamma-carbon of the D-proline residue to mimic the charge distribution of the natural beta-hairpin. Structural studies revealed that the antimicrobial potency of the non-disulfide-bonded peptides can be correlated to the stability of the beta-hairpin conformations they adopt in aqueous solution. The presence of 150 mM NaCl was found to have little effect on the antimicrobial activity of PG-1, but one of our linear analogues loses some potency under these high salt conditions. Despite this discrepancy in salt sensitivity, NMR and CD data indicate that neither PG-1 nor our linear analogue experiences a significant decrease in beta-hairpin conformational stability in the presence of 150 mM NaCl. Thus, salt inactivation is not due to destabilization of the beta-hairpin conformation. Furthermore, our results show that beta-sheet design principles can be used to replace conformation-stabilizing disulfide bridges with noncovalent conformation-stabilizing features.
منابع مشابه
The role of disulfide bridges in the 3-D structures of the antimicrobial peptides gomesin and protegrin-1: a molecular dynamics study.
Some antimicrobial peptides have a broad spectrum of action against many different kinds of microorganisms. Gomesin and protegrin-1 are examples of such antimicrobial peptides, and they were studied by molecular dynamics in this research. Both have a beta-hairpin conformation stabilized by two disulfide bridges and are active against gram-positive and gram-negative bacteria, as well as fungi. I...
متن کاملConformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.
Disulfide-bonded beta-hairpin structures are common among antimicrobial peptides. Disulfide bonds are known to be important for antimicrobial activity, but the underlying structural reason is not well understood. We have investigated the membrane-bound structure of a disulfide-deleted analogue of the antimicrobial peptide protegrin-1, in which the four Cys residues were replaced by Ala. The sec...
متن کاملCysteine deleted protegrin-1 (CDP-1): anti-bacterial activity, outer-membrane disruption and selectivity.
BACKGROUND Protegin-1 (PG-1: RGGRLCYCRRRFCVCVGR-amide) assumes a rigid β-hairpin like structure that is stabilized by two disulfide bridges between Cys6-Cys15 and Cys8-Cys13. Previous studies, employing linear analogs of PG-1, with Cys to Ala mutations or modified Cys, have demonstrated that the disulfide bridges are critical for the broad spectrum and salt resistant antimicrobial activity of P...
متن کاملCorrelation between simulated physicochemical properties and hemolycity of protegrin-like antimicrobial peptides: predicting experimental toxicity.
The therapeutic, antibiotic potential of antimicrobial peptides can be prohibitively diminished because of the cytotoxicity and hemolytic profiles they exhibit. Quantifying and predicting antimicrobial peptide toxicity against host cells is thus an important goal of AMP related research. In this work, we present quantitative structure activity relationships for toxicity of protegrin-like antimi...
متن کاملQuantitative structure activity relationship study of inhibitory activities of 5-lipoxygenase and design new compounds by different chemometrics methods
A quantitative structure-activity relationship (QSAR) study was conducted for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using chemometrics methods such as multiple linear regression (MLR) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 41 42 شماره
صفحات -
تاریخ انتشار 2002